Dental simulation is important
Today

• Take the opportunity to enjoy the facilities
• Remember that endodontics is a team sport – it is difficult to do on our own
• As a profession we need to be looking at ways of improving clinical outcome
• We need to break down our goals into important small do-able tasks
Handouts (PDFs) can be found at www.hodsollhousedental.co.uk
Small things that we need to do better

• Access
• Canal(s) location

- **Small Scout Files (#08 / #10)** to confirm presence and patency of root canal(s) – very important for re-treatments – must learn ‘watch-winder’ action

- **Preparation** – Coronal, Mid and Apical thirds
- **Obturation**

• **Coronal Restoration**
Why do we need to do these well?

Dummer (1997a & b)
The patient will be equally happy (or unhappy) with either form of fixed restoration.
What endodontic skills are we going to need throughout the life of our patients?

- We all need to know and understand the important factors that influence Endodontic outcome
What factors have been proven to make a difference to endodontic outcome?
We all should all have read this critical review on Endodontics Ng et al. (2008 a & b) Int Endod J 41: 6-31

• Pre-operative apical area
• Root filling ending within 2 mm of radiographic apex (instrumentation and obturation)
• Voids within the root-filling (obturation quality)
• Satisfactory restoration coronal seal (post-Rx Rest Dent)
Electronic Pulp Tester - a great tool

Get the patient to hold the pulp tester and let go when they feel something
Presence of pre-operative area

• Why do you think this is important?
• How long will it take to heal after treatment?
If no sign of healing or radiographic improvement at 24 months then likely not to have worked
Should see an improvement or resolution by 24 months
Root filling ending within 2 mm of radiographic apex (instrumentation and obturation domains)
Electronic Apex Locators
always use the tip (not the clip) - your nurse can put hold it on the head of the hand-piece it doesn’t need to be on the file
Gauging & diagnostic radiographs in a digital age

• Learn to use and trust an EAL – it’s right as long you can get predictable Zero readings and it’s not ‘jumping’
• Prepare the root canals with tip of EAL placed on the hand piece as you work
• Always know where you are with reference to the Zero reading
• Use the ‘Wand’ not the ‘Clip’
We must understand how to verify the apical size of our chosen master GP point. We will use either a plastic Maillefer ruler (cut flush with scalpel blade at chosen size gives a apically ‘gauged’ master GP point) or the Gutta Cutter. Remember GP points vary massively

This gives us control and helps us to obturate confidently and keep our RCT within the root canal
Teeth with apical areas you will get an approximate 12% drop-off in outcome per mm short of ideal length
‘Golden Rules’

- Never put an unmeasured endodontic instrument into a root canal
- Use your pre-operative radiographs to help provide a guide on likely working length(s)
- Share measuring responsibilities – nurse with measuring block responsible for clearly instructed measurement of all files, syringe needles etc
- Careful gauging and pre-cementation radiographs please
We are now probably as good as we can get “ARE WE THERE YET?”

The older techniques hold up well

Irrigation and ‘bug-killing’ are extremely important when apical periodontitis is present

We must all ‘crack’ a predictable obturation technique
Irrigation & Cleaning is the key

• Ultrasound – 1 minute per canal using and ultrasonic needle and 15ml of 6% hypochlorite.

• Addition of U/S gave a **sevenfold increase** in the chance of a negative culture could be obtained at the end of the procedure.

• U/S significantly reduced colony forming units (CFUs)

Increasing ‘bug-killing’ with hypochlorite

- Warm - 1% at 40 degrees is as effective as 5.25% at room temp
- ‘Pump’ with final GP – 30 seconds per canal with EDTA then 30 seconds with hypochlorite immediately prior to obturation
- This has been shown to make a big difference to outcome for both de-novo and revisions (EDH / USA)
Failure & Revision
Retreatment or radiographic monitoring in endodontics

J.-P. VAN NIEUWENHUYSEN, M. AOUAR & W. D’HOORE*

Department of Dental Medicine and Stomatology, and *Department of Hospital Administration, Catholic University of Louvain, Belgium

Summary

The aim of this clinical study was to assess 1032 endodontically treated roots in relation to: (i) the success rate of retreatment (612 roots)—only cases that had recall examinations of 6 months or longer

Introduction

Studies have shown that success rates of root canal therapy generally approach 90% (Lewis & Block 1988). When treatment fails, retreatment rather than extraction is usually indicated (Allen et al. 1989), but the
Re-Treatment usually means removing a GP - do not be scared of the stuff it will not bite!
Sometimes we will need to carry out apical surgery – we must do it properly
Success rates

- 31-96% based on ‘strict’ criteria
 - Complete resolution of periapical lesion
- 60-100% based on ‘loose’ criteria
 - Reduction in size of existing periapical lesion

80-82%

Strip down to assess Restorability and reason(s) for endodontic failure – good provisional seal
Can we predict if our Endo is going to work?

Pre-operative:
- Presence of periapical lesion (49% lower)
- Size of periapical lesion (14% lower for every 1mm)
- Presence of sinus (48% lower)
- Presence of root perforation (56% lower)

Ng, Mann & Gulabivala; International Endodontic Journal, 2011
Predictive Discussions with the patient

- CAP with exudation - presence of sinus (48% lower)
Is our Endo going to work?

Intra-operative:
- Achieving patency (Two-fold increase)
- Canal prepared short of terminus (12% lower for every 1mm short)
- Long root filling (62% lower odds of success)
- Using Chlorhexidine as irrigant (53% lower)
- Using EDTA (Re-RCTx) (Two-fold increase)
- Inter-appointment swelling/pain (47% lower)

Ng, Mann & Gulabivala; International Endodontic Journal, 2011
Early patency and drainage is very important with teeth with CAP.
Is our Endo going to work?

Post-operative:

- Good coronal restoration (Eleven-fold increase in odds of success)

Ng, Mann & Gulabivala: International Endodontic Journal, 2011
We must protect the investment
Satisfactory Restoration

cracked tooth - coronal seal (post-Rx Rest Dent) – orthodontic band and amalgam core UR6 prior to casting
A comparative study matched 196 single-tooth implants to 196 root-canal-treated teeth.

Compared 4 different outcomes: success, survival, survival with intervention and failure.

Interestingly, 73.5% of implants were considered successful in comparison with 82.1% of endodontically treated teeth.

Failure was recorded in 6.1% of subjects in both groups.

Implants required a significantly greater amount of interventions (18%), which varied from connective tissue graft and remedial surgery for peri-implantitis to screw loosening.

Although markedly fewer (3.6%) interventions for the endodontic group were noteworthy and included root canal re-treatment and apical surgery.

Endodontic Rx tooth survival

Survival at eight to ten years was 87%

They were able to place the influential factors in order of significance:

1. A full coverage coronal restoration after root canal treatment
2. Tooth has both mesial and distal proximal contacts
3. Tooth not acting as abutment for either a removable or fixed prosthesis
4. Tooth type, specifically non-molar teeth.

Endodontic Tooth Survival

After four years the cumulative tooth survival rate was 95.4% for primary treatment and 95.3% for secondary treatment.

Post-operative factors relevant to survival of root filled teeth were:

- The presence of a cast restoration coronally (positive)
- Two proximal contacts (positive)
- Cast post and core (negative)
- Terminal tooth (negative)

Post Endodontic Restoration and Cuspal Protection

Non-vital posterior teeth # unfavourably
Vital teeth fracture more favourably (supra-gingival) and thus are usually restorable
Survival rates in NHS

- Tooth still in mouth and asymptomatic
- RCT of 174 lower 6s
- 12 NHS practices
- Salford (NW England)
- 90% retained at 5 years
- Most failures in first year
- 10% failure: 15 extracted, 1 retreated
- Statistically significant difference if tooth crowned

Reduce the risk of coronal leakage by cutting back GP - so the whole pulpal chamber can be filled.

Saunders & Saunders Coronal leakage as a cause of failure in root canal therapy: a review’

Endod Dent Traumatol (1994)
Skills we need you to all display today

• Think about preparation – with Rotary (Protaper) and Reciprocation (Reciproc)
• Break up into coronal / mid / apical (Hand / Protaper and Reciproc)
• Achieve apical patency / Apical gauging
• Irrigation – dynamic pumping / EDTA / Hypochorite
• Obturation – vertical warm and cold lateral condensation
Let's get going with practical stuff please
Dental Simulation
(Rotary Preparation)

Practical Endodontics Thursday
24th July 2014
We are after a continuous tapered shape
allows early flow of sodium hypochlorite to apex and makes obturation more effective
Coronal Third
Choice for Orifice/lip shaping

SX

G4 G3 G2
Protaper Shapers:

SX
S1
S2
Gates Gliddens - brush on the upstroke
One instrument

SX equivalent to GG 1-4
Correct access and radicular preparation will allow passive placement of scout file and the early taking of the W/L.
Why do I use use ProTaper & ProFiles?

- Super elastic
- Efficient debris removal
- ‘Brushing action’ (ProTaper) allows straight line access to be established quickly
- Can use best of both systems
- **ProTaper** offers variable taper
- **ProTaper** alone can establish basic shape in a straight/minimally curved canal with 3 instruments
- **Protaper** excellent for coronal 2/3rds of canals
- **Profile** less aggressive and less tapered at apex – therefore more suitable for apical finishing
- **ProFile** offers continuous fixed taper and is less aggressive in the apical third than the **Protaper** finishing files
ProTaper Next – Improves the apical part of the system

• **Less aggressive and less tapered at apex**

• **Less rigid finishing files than previously**
Coronal S1 & Mid Third S2

Canal shaping

- 017
 - 2%
 - 4%
 - 4%
 - 7%
 - 11%

- 020
 - 4%
 - 7%
 - 11.5%

S1

S2

www.hodsollhousedental.co.uk
Apical third - Protaper options - Canal finishing – I am happy for you all to get F1 (red) to length and then stop
Overall canal shape at this point (F1 to length)

- Coronal flare
- Continuous taper
- No deviation/transportation from the original canal shape
- No ledging or zipping
- Apical stop 0.5-2mm from anatomical apex
Summary of ProTaper Preparation (for straightforward canals)

- Access / GGs / SX
- Ensure that a small scout #08/#10 K files can be passed to the apex of the canal(s) – WL estimation with EAL / or X-ray with at least a size #15 file in situ
- **Protaper** S1 (purple) or S2 (white) to full working length
- **Protaper** F1 (yellow) to full length
- Gauge apex with hand K file
- Use appropriate sized **ProTaper** F1, F2 or F3 depending on apical gauge
- Pre-cementation radiograph with verified Profit GP point(s) in situ
- Dynamic pumping – followed by Obturation
Apical Third of Canal
Gauging & Diagnostic radiographs in a digital age

- Learn to use and trust an EAL – it’s right as long you can get predictable Zero readings and it’s not ‘jumping / zipping’
- Prepare the root canals with tip of EAL placed on the hand piece as you work
Apical Third - Apex

• Apical gauging of your GP point with a Gutta Cutter or a plastic Maillefer ruler
• Check that #20 if F1; #25 if F2 or #30 if F3 binds solid at WL and doesn’t pass through the apex
• Check that higher sized hand files step back from apex
Verify apical size of master GP point with plastic Maillefer ruler to apical gauge - GP points vary massively – cut flush with scalpel blade then you have an apically ‘gauged’ master GP point that can be seated within the root canal – Gauge canal apex without other factors higher up the canal affecting ‘the seat’ of the file.
Summary of Hybrid Preparation (for difficult canals)

- Access / GGs / SX
- Ensure that a small scout #08/#10 K files can be passed to the apex of the canal(s) – WL estimation with EAL / or X-ray with at least a size #15 file in situ
- **Protaper** S1 (purple) or S2 (white) to full working length
- **Protaper** F1 (yellow) to full length
- Gauge apex with hand K file
- Use appropriate sized double-striped **Profile** (06 taper) to apex
- Pre-cementation radiograph with verified GP point(s) in situ
- Dynamic pumping – followed by Obturation
Getting the best out of conventional Hand K filing

1. Thread the file down the root canal with a gentle clockwise rotation – no more than a ¼ turn
2. On apical resistance, keep apical pressure on and de-rotate the file as it moves coronally
3. Keep repeating the process until the file is loose at the required length.
4. Then move up a size
Reciprocation
Single file systems

• Reciprocation technology
• Single file systems
• A defined back and forth movement as oppose to continuous rotation
• Most popular systems are *Wave One* (DENTSPLY) and *Reciproc* (VDW)
WaveOne

- 3 files
- 21/0.06 – smaller diameter, longer and more curved canals
- 25/0.08 – majority of root canal configurations regardless of length, diameter of shape
- 40/0.08 – larger diameter and straighter canals

Reciproc

- 3 files
- R25, 25/0.08 – narrow canals, partially or completely invisible on radiograph
- R40, 40/0.06 – medium canals, completely visible on radiograph
- R50, 50/0/06 – wide canals
Reciprocation – a alternating back-and-forth movement.

* CW and CCW movements determine amplitude of reciprocation*
- Instrument is first driven in a cutting direction and then reverses to release the instrument.
- Several reciprocating movements complete one 360 degree rotation.
- The angle in the cutting direction is greater than the angle in the reverse direction.
-- Angles set in the motors
RECIROC

Instrument Design

- Non-cutting tip
- M-Wire NiTi
- Thermal treatment process
- Regressive taper
- S-shaped cross section

![Images of RECIPROC instruments R25, R40, R50]
Reciproc Technique

- Access cavity/ straight-line access
- EWL from rad
- Irrigate access cavity
- Select instrument R25, R40 or R50
- Introduce instrument into orifice
- Press foot pedal when instrument at orifice
• Slow in-and-out pecks
• 3mm movements
• “3-pecks and out!”
• 1 in-and-movement = 1 peck
Remove instrument and clean/inspect
Reciproc Technique

- Re-irrigate
• Insert ISO size 10 C-PILOT file or K-file
• Make sure canal is free 3mm beyond prepared length / determine WL with AL
• Continue with Reciproc instrument until full WL is reached
• Withdraw instrument as soon as WL is reached
Glide path management

1. Initial hand filing to create a Glide Path
 - Current teaching standard to prevent a rotary instrument from binding in the root canal

2. Without Glide Path
 - Goes against current teaching standard
 - CW and CCW angles set in the motor are lower than the angles at which these instruments fracture.
 - When these files bind in the canal, it will not fracture because they will not rotate past its specific angle of fracture
Rotary Instrument
Advantages / Disadvantages

-Safety
-Shorter working time
-Instruments cantering ability
-Greater taper shapes for effective disinfection
-Less number of instruments required
Endodontics has got easier and much quicker (reciprocation and MB2)
This gives much more time to get the irrigation right – we need it at the apex
Re-treatment has just got quicker too
Endodontic Warm Vertical Obturation

Peter F. A. Briggs
Consultant in Restorative Dentistry

St George’s Hospital

5th March 2014
Endodontic Warm Vertical Obturation
(two components: apical down-pack followed by warm backfill – goal is the creation of a ‘void less’ root-filling ending within 2mm of radiographic apex (Ng et al 2008))
Use the correct GP points for the correct system you are using
Ensure that your tapered GP points fit well within the root canals and have been apically gauged – the process can only work predictably if you have
Apical Obturation

• Confirm that heating tip and a Buchanan plugger can reach to within 5mm of WL
• Mark this length (WL minus 5mm) with a silicone stopper
• Coat the master cone apically with a thin layer of sealer and insert to WL
• Set heating tip to 200°C to burn off excess GP from orifice
• With heat ‘on’ push to stop in one slow movement
Select a correct ‘sized’ and ‘tapered’ GP point
Work out which plugger can get down to within 4mm from apex
Apical obturation

• Activate heating tip to release plugger shearing off the apical portion

• Vertically condense the GP with cold Buchanan plugger to pack the apical portion

• A radiograph can be taken to check density and position of apical GP
The Vertical Heated Down-pack and warm back-fill
• Activate heating tip to release plugger shearing off the apical portion

• Vertically condense the GP with cold Buchanan plugger to pack the apical portion

• A radiograph can be taken to check density
The Vertical Heated Down-pack
• Set the GP backfill extruder to 200°C.
• Insert the needle to length, hold for 3 seconds and then express molten GP into the canal in increments of 3mm.
• Condense the GP with the cold Buchanan pluggers
• Repeat until 3mm short of canal orifice
Coronal backfill obturation

- Set the GP extruder to 200°C.
- Insert the needle to length, hold for 3 seconds and then express molten GP into the canal in increments of 3mm.
- Condense the GP with the cold Buchanan pluggers
- Repeat until 3mm short of canal orifice
Problem with the plastic blocks and teeth

- They melt
- Use lots of glide
- Accept you will melt the blocks
- Accept that you will leave GP core behind- we will show you how to retrieve / remove it
Now please go and do it